Valorization of untreated rice bran towards bioflocculant using a lignocellulose-degrading strain and its use in microalgal biomass harvest
نویسندگان
چکیده
BACKGROUND Microalgae are currently considered as a promising feedstock for the production of biofuels and high-value products. However, the efficient harvest of microalgal biomasses from their culture broth is a major challenge. The harvesting of algal biomass by flocculation combined with gravity sedimentation is more convenient and cost-effective than traditional methods such as centrifugation and filtration. Compared to inorganic and chemically synthetic flocculants, bioflocculants are a suitable choice for microalgal harvest due to their biodegradable and nontoxic properties. Nonetheless, the high production costs associated with expensive substrates hinder the commercial applications of bioflocculants. Previous studies have shown that the hydrolysates of lignocellulosic biomasses from dilute acid hydrolysis can be utilized as an inexpensive carbon source for the production of bioflocculants. However, the toxic by-products generated in the dilute acid hydrolysis step limit the efficiency of subsequent fermentation. The strains that produce bioflocculants by using untreated lignocellulosic materials can circumvent the pretreatment process, as well as promote the application of bioflocculants in microalgal harvest. RESULTS Under alkaline fermentation conditions, the alkaliphilic strain Bacillus agaradhaerens C9 secreted 1.69 IU/mL of alkali-tolerant xylanase and 0.06 IU/mL of cellulase, indicating that this particular strain can efficiently convert untreated rice bran into bioflocculant (RBBF-C9), thereby circumventing rice bran pretreatment for downstream fermentation. The optimal fermentation conditions that result in the highest bioflocculant yield (12.94 g/L) were as follows: 20 g/L of untreated rice bran, 3 g/L of yeast extract, and 20 g/L of Na2CO3 at 37 °C for 24 h. RBBF-C9 contained 74.12% polysaccharides and 4.51% proteins, and was estimated to be 137 kDa. Furthermore, the bioflocculant RBBF-C9 exhibited good flocculating efficiency (91.05%) of oil alga Chlorella minutissima UTEX2341 when 60 mg/L of RBBF-C9 was added into the algal culture broth. CONCLUSIONS This study demonstrated that untreated rice bran is a suitable inexpensive substrate for the production of bioflocculants, and thus provides a novel approach in utilizing rice bran. The extracted bioflocculants may be potentially used in biomass harvesting of the oil algae C. minutissima UTEX2341 from the culture broth.
منابع مشابه
Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae
BACKGROUND Microalgae are widely studied for biofuel production. Nevertheless, harvesting step of biomass is still a critical challenge. Bioflocculants have been applied in numerous applications including the low-cost harvest of microalgae. A major bottleneck for commercial application of bioflocculant is its high production cost. Lignocellulosic substrates are abundantly available. Hence, the ...
متن کاملStatistical optimization of harvesting Chlorella vulgaris using a novel bio-source, Strychnos potatorum☆
The present study was aimed at harvesting microalga, Chlorella vulgaris, by bioflocculation using seed powder of clearing nut, Strychnos potatorum. The research was essentially the prime step to yield a large biomass for utilising the cells in biodiesel production. Optimization of the parameters influencing bioflocculation was carried out statistically using RSM. The optimized conditions were 1...
متن کاملPurification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production
A thermophilic strain AMF-07, hydrolyzing carboxymethylcellulose (CMC) was isolated from Kerman hot spring and was identified as Bacillus licheniformis based on 16S rRNA sequence homology. The carboxymethylcellulase (CMCase) enzyme produced by the B. licheniformis was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography. The purified enzyme gave a single band on S...
متن کاملThe possibilities of the application of algal biomass in the agriculture
Introduction The use of algal biomass, which is a renewable source of many valuable active substances with a wide range of applications in agriculture, includes sustainable agriculture and manufacturing and meets both economic and ecological objectives, considered as a protection against contamination and risks from agricultural activities. The size of the productivity of microalgal biomass is ...
متن کاملBioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production
Bioflocculation, being environmental-friendly and highly efficient, is considered to be a promising method to harvest microalgae. However, one limitation of this technology is high expense on substrates for bioflocculant bacteria cultivation. In this regard, we developed an innovative method for the inner-recycling of biomass that could harvest the typical microalgae, Microcystis aeruginosa, us...
متن کامل